Nutrition and Hydration Tips for On and Off the Bike

Kim Heintz Functional Diagnostic Nutrition® Practitioner

Hey, I'm Kim!

OPPORTUNISTI																
DYSBIOTIC & OVERGROWTH BACTERIA	Result	Reference														
Bacillus spp.	1.02e6	< 1.76e6														
Enterococcus faecalis	4.86e3	< 1.00e4														
Enterococcus faecium	3.97e3	- 1.0004	prime erection erection and	value												
Morganella spp.		Oxalate Metabolites				11										
Pseudomonas spp.	<dl< th=""><th>CONTRACTOR OF A</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></dl<>	CONTRACTOR OF A														
Pseudomonas aeruginosa	<di< th=""><th>19 Glyceric</th><th>0.77 - 7.</th><th>4.8</th><th>4.8</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></di<>	19 Glyceric	0.77 - 7.	4.8	4.8											
Staphylococcus spp.	<di< th=""><th>20 Glycolic</th><th>16 - 11</th><th>7 H 245</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></di<>	20 Glycolic	16 - 11	7 H 245												
Staphylococcus spp. Staphylococcus aureus	5.33e2 High †	20 Glycolic	10 - 11	n 240												
Steptococcus spp.	8.65e3 High †	21 Oxalic	6.8 - 10	1 67												
	a.ases mign (Glycolytic Cycle Meta	bolites									_				
COMMENSAL OVERGROWTH MICROBES	2.00-4					NUTRITI	ONAL ELEMENTS					TOXIC	ELEMENT	S		
Desulfovibrio spp.	2.08e4	22 Lactic	≤ 48	34												
Methanobacteriaceae (family)	4.17e8 High †					- 172 - 20	0.0 -68 -46 -6.9	-32 -29 -2.7	250 -0.1	-0.33 -1.80	005013 -71	035 -	.0595070	.004 -0.630	049 - 1.1	-6.3
INFLAMMATORY & AUTOIMMUNE-RELATED BACTERIA		23 Pyruvic	≤ 9.1	6.0												
Citrobacter spp.	<dl< th=""><th>Mitochondrial Marker</th><th>s - Krebs Cycle Metabolites</th><th>6</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>- 030</th><th>.0510060</th><th>.003 -0.540</th><th>42 -0.9</th><th>-54</th></dl<>	Mitochondrial Marker	s - Krebs Cycle Metabolites	6								- 030	.0510060	.003 -0.540	42 -0.9	-54
Citrobacter freundii	<dl< th=""><th></th><th></th><th></th><th></th><th>- 135 - 15</th><th>5.5 - 52 - 35 - 5.4</th><th>-27 -25 -2.2</th><th>190 -0.1</th><th>-0.26 -1.36</th><th>004011 -62</th><th></th><th></th><th>0.04</th><th></th><th></th></dl<>					- 135 - 15	5.5 - 52 - 35 - 5.4	-27 -25 -2.2	190 -0.1	-0.26 -1.36	004011 -62			0.04		
Klebsiella spp.	<dl< th=""><th>24 Succinic</th><th>≤ 9.1</th><th>3.6</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></dl<>	24 Succinic	≤ 9.1	3.6												
Klebsiella pneumoniae	<dl< th=""><th>Of Europein</th><th></th><th>M N 4.0</th><th>Contraction (Contraction)</th><th></th><th></th><th></th><th></th><th></th><th></th><th>025 -</th><th>.0425050</th><th>.003 -0.450</th><th>035 - 0.8 -</th><th>4.5</th></dl<>	Of Europein		M N 4.0	Contraction (Contraction)							025 -	.0425050	.003 -0.450	035 - 0.8 -	4.5
M. avium subsp. paratuberculosis	<di< th=""><th>25 Fumaric</th><th>≤ 0.1</th><th>H 1.9</th><th></th><th>-97 -11</th><th>1.0 - 36 - 24 - 3.9</th><th>-21 -20 -1.6</th><th>130 -0.0</th><th>-0.18 -0.91</th><th>003008 -53</th><th>36</th><th></th><th></th><th></th><th></th></di<>	25 Fumaric	≤ 0.1	H 1.9		-97 -11	1.0 - 36 - 24 - 3.9	-21 -20 -1.6	130 -0.0	-0.18 -0.91	003008 -53	36				
Proteus spp.	9.03e4 High †	26 Malic	0.06 - 1.	B H 2.3								020 -	.0340040	.002 -0.360	028 - 0.6	- 3.6
Proteus mirabilis	<di< th=""><th>27 2-Oxoglutaric</th><th>≤ 35</th><th>H 46</th><th></th><th>SANC</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></di<>	27 2-Oxoglutaric	≤ 35	H 46		SANC										
COMMENSAL INFLAMMATORY & AUTOIMMUNE-RELATED	BACTERIA					벙			_							
Enterobacter spp.	3.48e7	28 Aconitic	6.8 - 28	9.1								015 -	.0255030	.002 -0.270	021 - 0.5	-2.7
Escherichia spp.	1.38e8	29 Citric	≤ 50	7 308												
Fusobacterium spp.	2.68e6					- 22 - 2	0 -4 -2 -0.9	- 10 - 11 - 0.5	010 -0.0	2 -0.03 -0.02	001003 -35	46010 -	.0170020	.001 -0.180	014 - 0.3 -	-1.8
Prevotella spp.	1.84e8 High †	Mitochondrial Markei	rs - Amino Acid Metabolites													1 1
	UNGI/YEAST	30 3-Methylglutaric	≤ 0.1	76 0.21												
		31 3-Hydroxyglutaric	≤ 6.1	5.2				-5 -7			000001 -26		<< _			<<
FUNGLYEAST	Result		2 0.			Si Ca N	lg Na K Cu	Zn P F	e Mn C	r Se B				Be Hg C		AI
Candida spp.	<di< th=""><th>32 3-Methylglutaconic</th><th>\$ 4.1</th><th>5 1.1</th><th></th><th>Calcium Mag</th><th>resium Sodium Potassium Copper</th><th>Zino Phosphorus Iro</th><th>Manganese Chrom</th><th>um Selenium Boron</th><th>Cobalt Molybdenum Su</th><th></th><th>Uranium Arsenio</th><th>Beryllum Mercury Cad</th><th>dmium Lead</th><th>Aluminum</th></di<>	32 3-Methylglutaconic	\$ 4.1	5 1.1		Calcium Mag	resium Sodium Potassium Copper	Zino Phosphorus Iro	Manganese Chrom	um Selenium Boron	Cobalt Molybdenum Su		Uranium Arsenio	Beryllum Mercury Cad	dmium Lead	Aluminum
Candida albicans	<di< th=""><th>Neurotransmitter Met</th><th>abolites</th><th></th><th></th><th>104 1</th><th>7.2 20 2 3.4</th><th>14 12 0</th><th>.6 .022 0.0</th><th>6 0.07 0.08</th><th>.002 .002 42</th><th>21 N/A</th><th>.0005 .004</th><th>.001 0.04 .</th><th>.001 0.1</th><th>0.3</th></di<>	Neurotransmitter Met	abolites			104 1	7.2 20 2 3.4	14 12 0	.6 .022 0.0	6 0.07 0.08	.002 .002 42	21 N/A	.0005 .004	.001 0.04 .	.001 0.1	0.3
Geotrichum spp.	<di< th=""><th>Phenylalanine and Tyrosine I</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></di<>	Phenylalanine and Tyrosine I														
Microsporidium spp.	<di< th=""><th>33 Homovanillic (HVA)</th><th>0.80 - 3.1</th><th>1.7</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></di<>	33 Homovanillic (HVA)	0.80 - 3.1	1.7												
Rhodotorula spp.	Sai	(dopamine)				ADDITI	ONAL ELEMENTS									
	VIRUSES	34 VanillyImandelic (VMA) (norepinephrine, epinephrine)	0.46 - 3.1	1.3									Text: Be	ow Calibration Limit; Val	alue Given is Calib	bration
		35 HVA / VMA Ratio	0.16 - 1.1	3 1.3										Limit		
VIRUSES	Result	36 Dihydroxyphenylacetic (DOPAC) 0.08 - 3.	5 0.98		- 800 0	1.390590285009	1500300	19002	0 -0.74 -0.05	30017 -0.	14	"QNS	Sample Size Was Inad	dequate For Analy	ysis.
Cytomegalovirus	<di< th=""><th>(dopamine)</th><th></th><th></th><th>(3)</th><th>Ŧ</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></di<>	(dopamine)			(3)	Ŧ										
Epstein-Barr Virus	<di< th=""><th>37 HVA/ DOPAC Ratio</th><th>0.10 - 1.</th><th>1.7</th><th></th><th>.005 -0</th><th>260390190006</th><th>1000200</th><th>6001</th><th>4 -0.50 -0.03</th><th>20011 -0.</th><th>09</th><th></th><th>"N/A": Currently Not</th><th>x Available</th><th></th></di<>	37 HVA/ DOPAC Ratio	0.10 - 1.	1.7		.005 -0	260390190006	1000200	6001	4 -0.50 -0.03	20011 -0.	09		"N/A": Currently Not	x Available	
		Tryptophan Metabolites											Ideal L	wels And Interpretation	Have Been Base	d On
		38 5-Hydroxyindoleacetic (5-HIAA) ≤ 4.3	0.84		LE NCE							Hair Sa	nples Obtained From Tr Occipital Region Of	ne Mid-Parietal To The Scalp.) The
		39 Quinolinic	0.85 - 3.	1.5		ANG										
						E C								ory Analysis Provided by n H. H. S. Licensed Clir	nical Laboratory.	
		40 Kynurenic	≤ 2.3	0.51		.000 - 0	.000000000001	0000000	00 00	2 -0.03 -0.00	00 - 0.00 - 0.	00	No. 45	D0481787 Lab Dir: P. M	wendershausen, i	м. р .
						≥										
						9 ~~		<<	<<		<<					
						Ge	Ba Bi Rb Li	Ni Pt 1	1 1	/ Sr Sn	Ti W 2	Zr				
							arium Bismuth Rubidium Lithium				Titanium Tungsten Zie		-			
													1			
						.003	0.12 .003 .0023 .00	1 .01 .001 .00	.05	05 0.48 0.0	1 .04 .001 (0.03	-			

www.kimheintz.com

In This Workshop

How to fuel yourself for optimal performance both on and off the bike

What nutrient most women do not get enough of and how to figure out how much you need

Determining how much hydration you need both on and off the bike

Why balancing minerals daily – not just on the bike – is the secret sauce to optimizing your hydration levels

Some of my favorite recipes

Do you feel confused on exactly what to eat?

www.kimheintz.com

When I first started adventure racing...

www.kimheintz.com

Taking consistent action every single day is going to add up in your favor over time

www.kimheintz.com

The 3 Best Friends:

Protein

Carbs

Healthy Fat

www.kimheintz.com

Your 3 Best Friends:

www.kimheintz.com

These are all critical for exercise, recovery, hormone production, feeling energized all day long, mental clarity, and more

Your 3 Best Friends:

Let's talk about carbs first

Carbs

The Benefits of Carbs

- Some B vitamins for energy (especially folate)
- Loaded with fiber and antioxidants
- Vegetables (especially greens) help the body naturally detox
- Help keep cortisol levels balanced

The Downside of Eating Low Carb

- Low carb diets cause increase sodium loss, which can lead to electrolyte issues and dehydration
- High fat, low carb diets elevates cortisol levels, which...
 - Breaks your body down and doesn't allow you to recover
 - Harms protein synthesis
 - -Hurts your immune system
 - Puts your body under a lot of stress

The goal is to eat the right types of carbs & at the right amount

General Guidelines for Carbs:

Aim for 30-40% of your daily caloric intake from carbs 1 gram of carbs = 4 calories Aim to eat the starchier carbs before 2pm as they can raise blood sugar

Non-starchy veggies, root veggies, and carbs like quinoa, beans, lentils, hummus, and amaranth don't spike blood sugar

Your 3 Best Friends:

Protein

www.kimheintz.com

Let's talk about protein

Most women do not eat enough protein

www.kimheintz.com

Protein is a dietary SUPERSTAR

- A lot of studies are showing tons of health benefits from eating higher protein diets vs higher carb diets - Blood pressure, cholesterol, decreased risk of heart disease
- Helps maintain muscle tissue and building muscle
- Major player in
 - Hormones production
 - -Sleep
 - Digestion
 - Ovulation
 - -Immunity
- Increases satiety, so you feel satisfied with less food
- Burns more calories when we process it

General Guidelines for Protein:

Aim for 30% of your daily caloric intake from protein

 $1 \operatorname{gram} \operatorname{of} \operatorname{protein} = 4$ calories

Aim for between 0.8g to 1.2g per pound of bodyweight

(higher end when activity is higher, lower end when less) Easy way to get it in:

Eat a least 30 grams of protein with every meal (along with its BFFs carbs and healthy fat)

Include some protein snacks

If you are plantbased, research the protein sources you need to get in all 9 essential amino acids.

Meat, eggs, fish, and most dairy already includes these

Your 3 Best Friends:

Healthy Fat

www.kimheintz.com

Let's talk about fat

Fat is essential for performance and optimal health

www.kimheintz.com

Benefits of Healthy Fats

- Controls your appetite hormones keeping you feeling full longer
- Help reduce cravings and snacking
- Stabilizes blood sugar
- Makes you feel calm and relaxed
- Slows digestion
- Keep our energy high for much longer than carbs do

Sources of Healthy Fats

- Avocados & avocado oil
- Full fat coconut milk
- Organic, nitrate-free bacon
- Organic olive & coconut oil •
- Grass-fed ghee (instead of butter)
- Organic & pasture-raised meats and eggs •
- Quality cheeses •
- Nuts and nut butters

General Guidelines for Fats:

Aim for 30-40% of your daily caloric intake from fats

 $1 \operatorname{gram} \operatorname{of} \operatorname{fats} = 9$ calories

Test out whether you like higher percentage of *fats* or carbs and pick the ratios that work for you

Include a serving of fat with each meal to help keep things balanced

What to eat right before, during, and after a ride

www.kimheintz.com

Before – Night before/morning of • Healthy carbs (rice, quinoa, etc)

- Light proteins
 - digest

– For meat \rightarrow the less legs the better – easier to

• Foods lower in fat because it's easier to digest

During a Ride

- 60 minutes
- Some light protein
- Light fats ullet
- Easy to digest
- Focus on real foods when possible
- Avoid eating a ton of sugary foods

• 40-50g carbs per hour of exercise beyond

A gel brand that I like and is easy on my digestion is Maurten

www.kimheintz.com

Post Ride

- 30g of protein (within 30 min)
- Restock carbs within 2 hours
- Avoid sugary foods

Want to learn more?

www.kimheintz.com

Most athletes feel they are bonking when they are actually <u>dehydrated</u>

www.kimheintz.com

Many people are chronically dehydrated

www.kimheintz.com

Hydration Tip #1:

Not including workouts...

Aim to drink at least $\frac{1}{2}$ your bodyweight (in ounces) daily.

So, if you weigh 150lbs, you want to aim for at least 75 ounces of water a day.

What about when you're exercising?

www.kimheintz.com

Hydration Tip #2:

12 ounces per <u>30 minutes</u> of exercise.

Add more on days that are hot or you're sweating more.

• When you're adding exercise into the mix, you'll want to add

So if you weigh 150 lbs and ride for 2 hours:

$75 \text{ oz} + (12 \text{ oz} \times 4) = 123 \text{ oz}$ that day

If we drink water without electrolytes, especially when working out, we can still get dehydrated.

Hydration Tip #3:

- Start each morning with a pinch of sea salt (up to ¼ tsp) in a glass of warm water with a squeeze of lemon
- You can do this midday too if desired

You can also drink an adrenal cocktail

Drink an adrenal cocktail between mid-morning and 2-3pm if you feel like your energy dips.

- (vitamin C helps adrenals) • (rich in potassium) • (rich in sodium, potassium, and magnesium) coconut milk (rich in potassium) •

- 3 ounces of OJ • 1 tsp of of cream of tartar • ¹⁄₄ tsp of Celtic sea salt • 3 ounces of coconut water or full fat
What's so special about minerals in the body?

www.kimheintz.com

www.kimheintz.com

Minerals are the 'spark plugs of Life' Dr. Henry Schroeder

Electrolytes are chemicals that conduct electricity when dissolved in water.

They regulate nerve and muscle function, hydrate the body, balance blood acidity and pressure, and help rebuild damaged tissue.

The muscles and neurons are sometimes referred to as the "electric tissues" of the body.

www.kimheintz.com

No Mineral Stands Alone

www.kimheintz.com

Most people are deficient in sodium, potassium, & magnesium

& they tend to have too much calcium

www.kimheintz.com

Hydration Tip #5:

- Stay ahead of your electrolytes rather than try to chase after them – it'll be far more effective
- We cannot spot-treat minerals
- It's best to get most of your electrolytes & minerals from whole food sources

<u>Sodium</u>

- Celtic sea salt
- Pickled veggies
- Sauerkraut
- Celery juice
- Artichoke
- Beets
- Swiss chard
- Animal products
- Eggs

Magnesium

- Spinach
- Pumpkin seeds
- Avocados
- Hemp seeds
- Swiss chard
- Dark chocolate
- Almonds
- Cashews
- Mackerel
- Banana
- Plantain

•

- Beet greens
 - Sunflower seeds
- Summer squash
- Black beans
 - Brown ride
 - Broccoli

Potassium

Dried apricots Acorn squash Stinging nettle tea Celery juice Coconut water Coconut milk Beet greens Avocados Russet potatoes (skins especially) White button mushrooms Tomatoes Banana cantaloupe Asparagus Spinach

Hydration Tip #6

Use electrolyte packets before, during, and after rides to help replenish

Signs your minerals/electrolytes are depleted:

 Feel worse after 	•
exercising/feeling fatigued	•
 Dizziness 	•
• Cramps	•
 Lack of energy 	•
 Constipation 	•
 Skin issues 	•

• Water retention/bloating

- Confusion
- Muscle weakness
- Bloating/water retention
- Weak feeling
- Low blood pressure
- Depression
- Heart palpitations

The best way to figure out how you're getting enough and how to get minerals & electrolytes in balance?

Test, don't guess.

www.kimheintz.com

Running a hair tissue mineral analysis is a great way to determine what your body needs (and doesn't need)

																<<: Below Calibration Limit; Value Given is Calibratio Limit
- 0.39	059	0285	009	15	003	0090		020	- 0.74	- 0.05	30	017	- 0.14			"QNS": Sample Size Was Inadequate For Analysis.
0.00			005			0000			0.50	0.00						"N/A": Currently Not Available
- 0.25	- 1039	0190	005	10	- 1002	0060		- ,014	- 0.50	- 0.03	20	011	- 0.09			Ideal Levels And Interpretation Have Been Based Or Hair Samples Obtained From The Mid-Parietal To Th Occipital Region Of The Scalp.
																Laboratory Analysis Provided by Trace Elements, Inc an H. H. S. Licensed Clinical Laboratory. No. 45 D0481787 Lab Dir: P. Mendershauser, Ph.0
- 0.00	000	0000	.001	00	000	0000		002	-0.03	- 0.00	00	000	- 0.00		_	No. 45 D0461767 Lab Dir: P. Mendersnausen, Ph.L
					<<	<<						<<				
Ba	Bi	Rb	Li	Ni	Pt	TL		V	Sr	Sn	Ti	W	Zr			
n Berlum	Simuth	Rubidium	Lithum	Notel	Platnum	Thalium		Venedium	Stortum	Te	Titanium	Tungsten	Ziroonium			
3 0.1	2 .003	.0023	.001	.01	.001	.0005		.005	0.48	0.01	.04	.001	0.03			
:	Ba	- 0.00000 Ba Bi Sefum Seruth	- 0.000000000 Ba Bi Rb	-0.00000001 Ba Bi Rb Li	- 0.0000000100 Ba Bi Rb Li Ni Serium Samuth Rubidum Libium Nobel	-0.0000000100000001000 -	-0.0000000100	- 0.0000000100000000 - 0.0000000100000000 0000000000000000000 - 0.00000001000000000 - 0.00000001000000000 - 0.00000001000000000 - 0.00000001000000000 - 0.000000010000000000 - 0.000000000000000000 - 0.000000000000000000 - 0.000000000000000000 - 0.000000000000000000 - 0.000000000000000000 - 0.000000000000000000 - 0.000000000000000000 - 0.000000000000000000 - 0.000000000000000000 - 0.000000000000000 - 0.000000000000000000 - 0.0000000000000000000 - 0.0000000000000000000 - 0.0000000000000000000 - 0.0000000000000000000 - 0.0000000000000000 - 0.0000000000000000 - 0.0000000000000000 - 0.0000000000000000000 - 0.0000000000000000000 - 0.0000000000000000000 - 0.0000000000000000000 - 0.0000000000000000000 - 0.0000000000000000 - 0.0000000000000000000000	-0.0000000100000000000000000000002 Ba Bi Rb Li Ni Pt TI V Banuth Rubidue Lthum Noted Pathum Thatium Vandum	-0.0000000000100000000000000002 -0.03. - 0.0000000100000000000000002 -0.03. -0.00000000000000000000000000002002 -0.03. -0.00 -	-0.0000000000100000000000000002 -0.03 -0.00 << << << Ba Bi Rb Li Ni Pt Tl V Sr Sn Serium Samuth Rubidum Lithium Nicket Pathuan Thalium Vanadum Stantium Tin	-0.0000000100100000000000000020020.03 -0.0000 K = 100000100100000000000000000200200300 -	- 0.0000000100	-0.000000010000100000000000002002 -0.03 -0.00	- 0.00 000 001 000 000 000 002 0.3 0.0 000	-0.00 000 001 000 000 000 002 0.01 <t< td=""></t<>

www.kimheintz.com

								тох	C ELE	MENT	S					
	250	-0.14	-0.33	- 1.80	005	013	- 7126	035	0595	070	004	- 0.63	049	- 1.1	- 6.3	
	190	-0.11	-0.26	- 1.36	004	011	-6231	030	0510	060	003	- 0.54	042	-0.9	- 5.4	
	130	-0.08	-0.18	- 0.91	003	008	- 5336	025	0425	050	003	- 0.45	035	- 0.8	-4.5	HIGH
								020	0340	040	002	- 0.36	028	- 0.6	- 3.6	¥
									0255							
	010	-0.02	-0.03	-0.02	001	I	- 3546 - 2651	010	0170	020	001	-0.18	014	-0.3	-1.8	REFERENCE
	Mn	Cr	Se	в	Co	Мо	s	Sb		As	Be	Hg	Cd	Pb	AI	
		Chromium		Boron		Volybdenum	8.0v	Antimor	-	Arsenio	Beryllum	Mercury	Cadmium	Leed	Numinum	
6	.022	0.06	0.07	0.08	.002	.002	4221	N/	A .0005	.004	.001	0.04	.001	0.1	0.3	
										*<**: Be	low Calibr	ration Limit Lin		ven is Cali	bration	

Sources

- <u>https://www.medicalnewstoday.com/articles/153188#:~:text=Electrolytes%20are</u> %20chemicals%20that%20conduct,electric%20tissues%E2%80%9D%20of%2 <u>Othe%20body</u>.
- <u>https://science.drinklmnt.com/electrolytes/the-fdas-misguidance-on-sodium/</u>
- Kendra Perry HTMA Expert Course
- Dr. Stacy T. Sims Roar
- Balanced Bombshells Lifestyle Plan

Questions?

www.kimheintz.com